...
 
Commits (2)
This source diff could not be displayed because it is too large. You can view the blob instead.
a₁ π₁ P2.5 P97.5
Median 0.1 0.0 9.593631772294135 47.35853095832452
P5 0.1 0.0 8.690343637275621 40.94939249589704
P95 0.1 0.0 10.665725378202412 49.47657292729113
Median 0.1 0.05 9.48610624995501 47.2778772207115
P5 0.1 0.05 9.157114390146104 40.650054243472766
P95 0.1 0.05 10.064835190592479 49.34406343981328
Median 0.1 0.1 9.396202466735769 47.26786002871476
P5 0.1 0.1 9.054515262127477 41.503754923895436
P95 0.1 0.1 9.839312283207267 49.54594588448806
Median 0.1 0.15 9.401204950432824 47.07409612232247
P5 0.1 0.15 9.031549992571644 39.58144988933911
P95 0.1 0.15 9.772063368845718 49.6515393862977
Median 0.1 0.2 9.396563030635978 47.03180773659172
P5 0.1 0.2 8.940365488085375 37.21670040687925
P95 0.1 0.2 9.779966739865742 49.72524979115327
Median 0.1 0.3 9.074260498243461 42.27690120590334
P5 0.1 0.3 8.64685338325614 36.21290309901887
P95 0.1 0.3 9.454858598737307 49.313454134974286
Median 0.25 0.05 9.275976857100527 46.95769342281645
P5 0.25 0.05 8.288529990887731 39.059829304490485
P95 0.25 0.05 10.128129439563217 49.330371318531846
Median 0.25 0.1 8.79245684946035 46.16559413857833
P5 0.25 0.1 7.723649359943281 38.742540598368684
P95 0.25 0.1 9.800901203427468 49.15918706088356
Median 0.25 0.15 8.55605204329331 44.35518433321941
P5 0.25 0.15 6.717412725160647 37.53331891350084
P95 0.25 0.15 9.755093227631752 48.98993066151641
Median 0.25 0.2 8.10822685112887 43.872348725158275
P5 0.25 0.2 5.336755821286923 35.66307532420055
P95 0.25 0.2 9.589383467003975 49.129389973022604
Median 0.25 0.3 4.150304135215931 38.696823974833265
P5 0.25 0.3 1.3777846930765367 36.82496748580298
P95 0.25 0.3 5.660711420754025 42.356398851721906
Median 0.5 0.05 8.755865497169054 46.50158496135967
P5 0.5 0.05 7.90829742437998 39.05481372131405
P95 0.5 0.05 9.856818738101046 49.324096575039064
Median 0.5 0.1 7.909140255243052 45.946898949936624
P5 0.5 0.1 6.675248506871006 37.84992867881835
P95 0.5 0.1 9.665000329177348 48.78796084462342
Median 0.5 0.15 6.8530343023005695 44.987493562698525
P5 0.5 0.15 5.527439973449675 37.945499923157826
P95 0.5 0.15 8.954692309692389 48.633412156885015
Median 0.5 0.2 6.271081365548083 45.13152883759773
P5 0.5 0.2 4.884709696979122 38.61165584820682
P95 0.5 0.2 8.390462672413276 48.8697725703817
Median 0.5 0.3 4.908742438417214 44.735043363060754
P5 0.5 0.3 3.4953732614495197 37.41562079357052
P95 0.5 0.3 6.733268506571469 48.146081499352626
Median 1.5 0.05 9.594930808868664 48.8834376225587
P5 1.5 0.05 8.863303614396155 40.54797701113998
P95 1.5 0.05 10.152012265898538 51.067603040989695
Median 1.5 0.1 9.67857369261857 50.17156674133579
P5 1.5 0.1 8.92234054152583 42.42878942990131
P95 1.5 0.1 10.344578631538297 52.76416904191236
Median 1.5 0.15 9.767835973840786 52.181768410096026
P5 1.5 0.15 8.992270084728323 43.9461078874436
P95 1.5 0.15 10.379694731027625 54.658896180878685
Median 1.5 0.2 9.836965904357374 53.932147677726135
P5 1.5 0.2 9.100428271299458 44.07778626030025
P95 1.5 0.2 10.691253315539313 56.55851655459514
Median 1.5 0.3 10.030482034432957 56.8992278534223
P5 1.5 0.3 9.368765356988336 49.89957592974446
P95 1.5 0.3 10.966435739541541 60.23941695182166
Median 2.0 0.05 9.608308254687094 49.49791668926269
P5 2.0 0.05 9.004016447362325 42.84730006893487
P95 2.0 0.05 10.125360375466142 51.56614679126435
Median 2.0 0.1 9.609026307268529 50.745332335543566
P5 2.0 0.1 8.919155964379426 44.388278840025905
P95 2.0 0.1 10.486602905552886 53.258233354632985
Median 2.0 0.15 9.632611172661734 52.759159281014604
P5 2.0 0.15 9.13729634744257 45.88518486713691
P95 2.0 0.15 10.348002881582419 55.804098791239795
Median 2.0 0.2 9.67179939739199 55.35744594662765
P5 2.0 0.2 9.44338014731124 50.53298863000595
P95 2.0 0.2 10.225311794950496 57.86518238807728
Median 2.0 0.3 9.663273095035931 62.806751672218724
P5 2.0 0.3 9.429638135859474 59.654810145863955
P95 2.0 0.3 9.836158148116539 66.75470296766504
Median 2.5 0.05 9.583705022677876 48.74642925210519
P5 2.5 0.05 9.066472636181784 42.06350533972768
P95 2.5 0.05 9.874687640865607 51.355550554829314
Median 2.5 0.1 9.545984972677921 49.85828149127146
P5 2.5 0.1 8.686916275282368 42.66057572492626
P95 2.5 0.1 10.110077664211733 52.24358297076075
Median 2.5 0.15 9.58709149656128 51.3322372961465
P5 2.5 0.15 9.066129011374684 46.143537215403335
P95 2.5 0.15 10.211946588690063 54.458228510669215
Median 2.5 0.2 9.528157224970755 53.329358397381924
P5 2.5 0.2 9.166460974194186 49.41893356418717
P95 2.5 0.2 9.955635086496986 56.547975294553254
Median 2.5 0.3 9.346596386118117 61.213728699732656
P5 2.5 0.3 9.170427527862703 58.65004679524423
P95 2.5 0.3 9.55305330309891 63.90379420184113
Median 3.0 0.05 9.544388346441895 48.422127612638725
P5 3.0 0.05 8.89597107926362 41.59334536880274
P95 3.0 0.05 10.031073829625075 50.75974205091918
Median 3.0 0.1 9.578397902093123 48.899808632727954
P5 3.0 0.1 8.828676423873194 42.98791431955065
P95 3.0 0.1 9.954633260330564 51.5238361811557
Median 3.0 0.15 9.568560723504891 50.092831284609005
P5 3.0 0.15 9.02884008315951 45.245847245517496
P95 3.0 0.15 10.175272646032735 52.33441487338448
Median 3.0 0.2 9.55490858236239 51.748237561362366
P5 3.0 0.2 9.201556725403666 48.92469172426206
P95 3.0 0.2 9.994662035006993 53.83114198689149
Median 3.0 0.3 9.265591269964474 58.34390387181223
P5 3.0 0.3 9.067467498267199 56.203262039662015
P95 3.0 0.3 9.50075601937092 60.062606743484565
Median 5.0 0.05 9.571690785316504 48.20185674282887
P5 5.0 0.05 8.927917214758745 41.34669874659124
P95 5.0 0.05 10.142390941166472 50.16307610658221
Median 5.0 0.1 9.527047446411686 48.19053420994635
P5 5.0 0.1 8.902090611060608 42.75322198929737
P95 5.0 0.1 10.279826688554508 50.383517340566186
Median 5.0 0.15 9.585876697273479 48.828375354668395
P5 5.0 0.15 8.907326630729989 44.08848080912683
P95 5.0 0.15 10.379506349567183 50.315735447947134
Median 5.0 0.2 9.576719534816114 48.931650498423714
P5 5.0 0.2 8.837087010878298 45.97557618747743
P95 5.0 0.2 10.232720409170197 50.37029453380375
Median 5.0 0.3 9.47519014729816 51.91269115400049
P5 5.0 0.3 9.296071988847597 51.125323772494575
P95 5.0 0.3 9.609418178550351 52.91668896932558
......@@ -18,7 +18,7 @@ def sim(a1, pi1):
for _ in range(int(n * (pi1))):
samples.append(round(a1*random.lognormvariate(3.1073040, 0.4105784), decimals))
random.shuffle(samples)
result = rle2(samples, decimals)
result = kosmic(samples, decimals)
p025s.append(percentile(result, 0.025))
p975s.append(percentile(result, 0.975))
return p025s, p975s
......@@ -34,7 +34,7 @@ if __name__ == "__main__":
results[str(a1) + "\t" + str(pi1)] = pool.apply_async(sim, [a1, pi1])
# Output simulation results:
with open("results/y-gt-simulation.tsv", "w", encoding="utf-8") as ygt:
ygt.write("\ta₁\tπ₁\tP\t\n")
ygt.write("\ta₁\tπ₁\tP2.5\tP97.5\n")
for task, result in results.items():
result = result.get()
ygt.write("Median\t" + task + "\t" + str(np.percentile(result[0], 50)) + "\t" + str(np.percentile(result[1], 50)) + "\n")
......